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ON THE MECHANISM OF NUCLEATE BOILING
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Abstract—The mechanism of nucleate boiling from a superheated surface is studied fluid-dynamically

and thermodynamically.

The asymmetry of the fluid-dynamical field associated with the existence of a heating surface causes the
bubbles to move away from the surface with a nearly constant speed, while the surface area of the bubbles
increases linearly with respect to time. The time interval between bubble formation and departure is
proportional to the third power of the radius of the bubble. The consideration of the velocity and tempera-
ture fields in the vicinity of the heating surface provides a relation between the period of the bubble cycle
and the amount of superheat. The period is proportional to the third power of the radius of the bubble,
when the fields interact strongly on each other, and to the second power when they do not. The radius of

a bubble is inversely proportional to the amount of superheat.

NOMENCLATURE z, co-ordinate perpendicular to the heat-
specific heat at constant pressure; ing surface;
latent heat of evaporation of liquid ; zo,  distance from the heating surface to the
enthalpy; spherical centre of bubble;
= L/(R,T.); 7%, =206 TR/(p,L).

pressure in the fluid outside the bubble ;
pressure inside the bubble;

Greek symbols

heat flux through the liquid-vapour o, thermal diffusivity of liquid;
interface of the bubble; B, defined by equation (2.3);

radial co-ordinate; Y, defined by equation (2.18);

distance from the spherical centre of n.w, toroidal co-ordinates, equation (1.3);
bubble; 6, =(T — TYT, - T);

radius of bubble; K, thermal conductivity of liquid;

gas constant ; , velocity potential ;

area of the liquid-vapour interface v, kinematic viscosity of liquid ;

of the bubble; P, density of liquid outside the bubble;
time; Po,  density of vapour inside the bubble;
period from the departure of bubble o, surface tension;

to the new bubble formation; ®, angle defined in Fig. 1.

period from the bubble formation to

its departure;; Subscripts

temperature in the fluid outside the 0, vapour inside the bubble;

bubble; d, at the departure of bubble;
temperature inside the bubble; e, at the generation of bubble.

temperature at z = oo (saturation
temperature of liquid at p_);

INTRODUCTION

components of velocity of the fluid Tug MECHANISM of nucleate boiling is still not

(Fig. 1); well understood, despite its great technical

volume of bubble; importance and a number of experimental and
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theoretical works, several of which describe
some features of the boiling process quite well.
Observations show that the mechanism which
causes the bubble to depart from the heating
surface cannot be attributed only to buoyancy
forces, that is, to the effect of acceleration of
gravity, which has a dominant influence upon
the departure process of bubbles of com-
paratively large radius, that is, at the lower
superheat. For higher superheat, the departure
process is therefore governed by a different
mechanism, a fluid-dynamical and thermo-
dynamical one, which reveals itself more evi-
dently when the field has an asymmetrical
geometry—a plane solid heating surface. To
make the mechanism clear, it is necessary to
analyse the process of nucleate boiling hydro-
dynamically and thermodynamically. Concern-
ing nucleate boiling carried out in a superheated
or subcooled liquid without any solid heating
surface, a number of theoretical studies have
been made recently [1-4], though the physics
of practical nucleate boiling with solid heating
surfaces has not yet been disclosed.

The object of the present study is to treat the
process of nucleate boiling in a saturated liquid
on a solid heating surface—the formation of an
embryonic bubble on the heating surface, its
growth and its departure from the surface—
from the fluid-dynamical and thermodynamical
point of view.

GROWTH AND DEPARTURE PROCESS
In the course of this process, the following
assumptions are made; (1) the effects of the
acceleration of. gravity, the viscosity and the
compressibility of the liquid are neglected, (2)
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the shape of the bubble is that part of the sphere
of radius R,, with centre z, over the heating
surface (see Fig. 1), and (3) the vapour inside
the bubble is saturated corresponding the
pressure inside the bubble.

First, we consider the motion of the liquid
associated with the motion of the bubble—its
growing in size attached to the heating surface
until the departure from it. The equation of

z

Interface

70

n=r ¥
/S ’// 4 vl
Heating surface 7, <~ A,

Fig. 1. Co-ordinates.

continuity concerning the liquid surrounding
the bubble is

or

+ frw =0. (1.1)
0z

The boundary conditions of equation (1.1) are
provided by the facts that the normal compo-
nent of the velocity of the liquid vanishes on the
heating surface, and the velocity of the liquid
normal to the liquid—vapour interface is given
as the sum of those associated with the growth
of the bubble and its motion in the z-direction,
namely

w=0 at

Using toroidal co-ordinates (1, w)

sinh w
¥ coshw + cosny

z=0
v.R =R, + z5c08 ¢

} (1.2)

(1.3)

at R = Ro.

sin i
Y coshw + cosn



ON THE MECHANISM OF NUCLEATE BOILING 713

and the velocity potential, ¢, defined as

_% _%
u=z5 W= (1.4)

we can rewrite equation (1.1) as

0 ( sinh @ 6¢)+ 0 ( sinh @ 6¢>=0' (1.5)

o coshw+cosn56 6_t1 coshw+cosn6_11
Putting
¢ = \/(coshw + cos ) f(n) g(cosh w)
we obtain
¢ = /(s + cos ) oj? [A(4) sinh An + B() cosh An] Py _,/5(s) dA (1.6)
0
where

cos AL d(

2
s = cosh w, Pi}.—n/Z(S) = '\-{I—COSh in m .
0

With the relations
o9 _1—s(0¢ ¢ _ 1 sinn, (09 cos _ 1+ scosng
0z ),-0 R, \0n)p=r onlp_r,  Rocosno\on/ -, ?=7 + cos 1,

the boundary conditions (1.2) are reduced to

o o Rocosng [, . 1y sin? n
= =0, = =2 ; — . LY
((M),,:" (611),,:,,0 sin 77, (Ro + 2o cos o) + s + cos 1, (1.2)

If we find the solutions of equation (1.5) ¢, and ¢,
which satisfy the following boundary conditions,

09, 09, Rq cosng .
(o) ()~ St s
(%) _0 (%) _ _ Rycosng 2 sin’ 4
N Jpen M ) y=no sinn, s+ cosng
the solution of equation (1.5) can be expressed as
¢ =¢,+ ¢,
With equations (1.2”) and (1.6) and the equality

(1.27)

1 [* 2]
Jis ¥ cosm) J2 J cosh Ay sech A Py, _, 5(s) d4,
[\]



714 SUSUMU KOTAKE

¢, and ¢, are given as follows:

Rgcotng . (Rg + 2 cos 11g) (/2) cosh Ang sech An
= /(s + cos ,
91 = 11)[%[3111 no/(1 + cosn)] cosh A(ny — ©) ~ Asinh Ay, — )
0

x cosh A — m) Py _5(5)dA

. . 1 + cos 1
~ 2/2) Ry cot g . (Ry + 2, cos 77,) m—”g (s + cos ) Jcosh Ang
0
0

cosh A(y — m)
x sech An mmo———*:——) Pi).—n/Z(s) dl
b2 = — (s + cos ) R cot 1 . 2o sin? ng [2(/2)/sin 4] A sinh An, sech An
2[ inne/(1 + cos )] cosh An, — n) — Asinh A, — m)
x cosh A(n — ) P, _,,,,z(s) di
~ — 4/2) Rozo cot 1, . (1 + cos o) /(s + cosn) | Asinh An,
0
cosh A(n — n)
X sech An m Pi).—n/Z(s) di
Accordingly,

1+ cos
$(s, 1) = 2(\/2) R, cot no—l:%—nq\/<s + cos r,)

0

. ) .. . cosh A(n — =)
X j [(Ro + Z¢ cos ng) cosh Ang — 22, sin nyA sinh Ay | sech An m Py _npa(s)di. (L.7)
Forn = n,
Cos 77, 3o 8in% s + cosy
9lsm) = 2R, 1+ cosnyg [(Ro + 2 08 7o) + s+ cosno]\/[s + cos 'Io]' (18)

Next, consider the equation of motion of the liquid. Integrating the equation over the whole
domain of the liquid, X (whose boundary is denoted as S), with the assumption that, at infinity, the
velocity vanishes and the pressure approaches p_., yields

- %V¢dr+%Jv.nds+J@—pw)d5=0
z S S

where n is a unit vector normal to the boundary. The first term in the left-hand side of the above
equation can be expressed in the form of a surface integral, to which the surface of the heating wall
has no contribution. Therefore, the above equation becomes

0 j ¢s, dSo + .[ —Zn V¢ ds, +5J. v.ndS; + J(p — Pols, 480 = 0 (1.9)
So

5o So
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where S, is the area of the liquid-vapour interface of the bubble. Equation (1.9) is one of the equa-
tions of motion of the bubble. Since the boundary condition for the equation of motion of liquid is
given by

1 20
= ds —_— 1.10
Po Sof Pso 43¢ + R, (1.10)

So

the fourth term in the left-hand side of equation (1.9) is

20
(Po — P — E;)SO'

The consideration of the motion of the bubble in the z-direction yields the other equation of
motion of the bubble as

22
1ag 9%

M= Jpv.ndS0 + 24 [(Po — Pw) TRZ — o sin @, 27R, ] (1.11)

So

where M is the mass of the bubble, p, the pressure inside the bubble, ¢ the surface tension of liquid.
With the relations

o (pv? pv? p op
Jpv ndSo Jat(z)d” jz dr=-3 (¢ 6n>so dS
5 5 o

[}

and the assumption p, < p, equation (1.11) becomes

3 ((, o L2 2 ,
at <¢ an)so dSO + J‘v Edso = ;Zo (pw + R_o ot po) an. (1.12)
So

So

From equation (1.7)

_ 2Rozo o . zZ— Zo )
Orr= ~ Rt ze (R° + 2R, )
6¢ 2 a 2 ) R .
[(5> + (:_g) ] =R2+:22+42 Igzo (z — zo) b (1.13)
R=Rg 0
0¢ . L Z— 2z,
(6n)R=RO - Ro + %o RO

Substituting equation (1.13) and the relation

3y o _ 0n[R} — (z — z5)]
o 90 = ot dz

into equations (1.9) and (1.12), we obtain

d Ro = zp | ;2R3 — R 2
—4&[1(020 (ROR(‘ + 0 3 0 Zo)] + Z[R(z) _ 2?0 0 1{0(2)20 + ZO]RO(RO + ZO)

. . Ry —z 2 2
+ I:R(Z) + Z(Z) + Rozo OR 0]R0(R0 + Zo) = — [pw + _G - po] Ro(Ro + Zo) (1.14)
0 p R,
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d
“4& [0 {R3R3 + RoRozo(Ry — 2zo) + $23(RE —
+2RoRo(R? + 23(Rq + z¢) + (BR3Zy + 23NRE — 22) + %

2 20
=—|pp +— — Zo(R3 — z3).
p[ R, Po] o(RG

The pressure inside the bubble, p,, which is
involved in equations (1.14) and (1.15) can be
related to the temperature inside the bubble,
Ty, by the assumption (3) which implies the
condition of saturation of the vapour inside
the bubble, that is, the Clausius~Clapeyron

relation
po L[1 1
In—=—{——-—
. Rg(Te To>

where p, and T, are the pressure and the tem-
perature of the vapour inside an embryonic
bubble, respectively, at the time of the bubble
initiation (t = 0), L latent heat of vaporization,
and R, gas constant of the vapour. Since
|T, — Ty| < T,, the above equation is rewritten
as

L T,-T,

Po e (L16)

= De -
P. R,T, T,

The temperature of the vapour inside the
bubble, Tq, is given by the relation of the energy
transfer through the interface of the bubble.
If the growth rate of the bubble is large com-
pared with the rate of heat conduction in the
vicinity of the interface, the variation in the
temperature field of the liquid associated with
the growth of the bubble should be confined
within a narrow layer near the interface.
Isshiki [5] observed these features of the
temperature field by an optical method, so
that the treatment similar to that carried out by
Plesset—Zwick [6, 7] for the case of the growth
of a bubble without any solid heating surface
can be used to obtain the temperature field
of the liquid surrounding the bubble.
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Rozo + z3)}]

(1.15)

Since we can usually assume that the thick-
ness of the temperature boundary layer on the
liquid—vapour interface of the bubble is so
thin compared with the radius of the bubble
that the curvature of the liquid-vapour inter-
face should hardly affect the temperature field,
the equation of energy with the co-ordinate, y,
whose origin is on the liquid—vapour interface,
becomes

&*T 19T _
ax* adt

whose boundary conditions are

0 (1.17)

a—T=f(t) at x =0,
Ox

T = T,(z) at x=w

(1.18)

where f(t) denotes a quantity proportional to
the amount of heat flow through the liquid—
vapour interface into the bubble, defined as

q= ‘jeoxf(t)Z nR3sin ¢ dg = xf(t) S, (1.19)
0

where x is the thermal conductivity of the
liquid. T,(z) is the temperature at the point far
from the liquid-vapour interface and, with
the assumption of a thin boundary layer of
temperature, can be replaced by the tempera-
ture at the point on the plane parallel to the
heating surface and far from the liquid-vapour
interface, that is, from equation (2.14),

z{2VIalte + 0]}
Too(z) = Tw - (Tw - ’1;) (2/\/7[)

x exp [ — &3] d¢ (1.20)

where T, is the temperature of the heating sur-
face, T; that of liquid at z = oo, that is, the
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saturation temperature corresponding to the
pressure p,, and ¢, the time interval from the
departure of the bubble to the generation of
the next embryonic bubble.

Taking the Laplace transform of T, f(t) and
T, denoted as @, F(s) and @, respectively, we
obtain from equation (1.17)

O(x,s = —./(a/s) F(s)exp [—/(s/0)x] + ©(s).

Accordingly, the temperature of the liquid in
the vicinity of the bubble is

Tun——JU)jf“)

x exp [— 2/4a(t —9]dt+ T,z (1.21)

and the temperature of the liquid at the liquid-
vapour interface is

f(x)
-1

T0,0) = To(2) — /(@/m) j dr.  (1.22)

If a mean value of the above obtained tempera-
ture, an area-mean for simplicity, is used for
the temperature of the vapour inside the bubble,
the latter becomes

Ro+zo

1 t
n=&+%Jnmm—me
0 0

@)

(t—)?
Since T,(z) given by equation (1.20) is very
nearly equal to T, for z > 4 /[u(t, + t)], the
first term in the right-hand side of equation
(1.23) can be reduced to

Ro+zo

dr. (1.23)

To@)dz = TRy + 20 ~ 2) + | T,(3)dz
4]

where z, = 4 /[«(t, + t)]. Furthermore, since
the second term in the right-hand side of the
above equation is nearly equal to (T, + T))z,/2,
we obtain
Ro+zo
[ T(@dzx
0

T(Ro + zo) + (T, — T)zy/2.

Considering this relation and f(t) =0 for
z > zg yields

Z
Ry + zg
/@

-t

=T +

- J/m) J‘

(1.24)

d'c:l
for Ry + zo > z,.
The rate of heat flow per unit time through
the liquid-vapour interface into the bubble, g,

is given by
dM_ d [ 20\ dE,
BT <V°RO>+ dt
(1.25)

in which the contribution of the direct heat
flow through the solid—vapour interface into
the bubble is neglected. hy, and h are enthalpies
per unit mass of the vapour inside the bubble
and of the liquid outside, respectively, and ¥,
is the volume of bubble. E, denotes the surface
energy of the liquid—vapour interface of the
bubble and is given by the following relation

d
= a‘t (Mho)

dE, do \ dS,
ar (" T dT) ar
Vo and S, are obtained from Fig. 1 as

W=

L»Jl?al

(Ro + 20)* 2Ry — z,),

So = 27Ro(Ry + z5).  (1.26)

Neglecting the effect of temperature upon the
surface tension, we obtain from equations

(1.19) and (1.25)

1 dhy d(po Vo)
=—{p.V Sfo7o)
1@ xSo{ po¥o g, + L4

-2o[(x) 4w

Usually, the first and third terms in the right-
hand side of the above equation are small
enough to be neglected compared with the

(1.27)
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second term, where

1) = Ld(PoVo).

= 1.27
KSe dt ( )

Now, all quantities in the process of growth
and departure are predicted; the temperature
inside the bubble, T, is obtained from the
equation of energy of the bubble, (1.23) or
(1.24), the pressure inside the bubble, p,, from
the condition of the saturation of vapour (1.16)
and R, and z, from the equations of motion in
the r- and z-directions, (1.14) and (1.15).

Let us consider the process shortly after the
generation of an embryonic bubble. Expanding
R, and z, with respect to time, we obtain

Ro=R,+ Rjt + Ryt +....
Zo = Z, + it + 2t + ...

} (1.28)

R, and z,, and R; and z; have the following
relations from equations (2.39) and (2.40) which

are to be mentioned later.
z, = R, cos ¢, z; = Ry cosq,.

The same procedure of expansion of T;, and p,
gives

(1.29)
(1.30)

To=T,(1 +cit + ¢t +...)
Po = P.(1 + ¢c,Ht + ¢,Ht* +..))

where H = L/(R,/T,). Assuming that the vapour
inside the bubble should obey the law of state
of an ideal gas, we obtain from equations
(1.29) and (1.30)

Po = pe [l + ¢ Ht + {co(H — 1)

—H}2 +..] (131)

Substituting equations (1.28) to (1.31) into
equations (1.23) and (1.27) yields ¢, c,, etc,
as functions of R,, Ry, R,, z,, etc.; for example,

26 1 R,
REpEHRQ

¢y = (1.32)

Substituting equation (1.28) into equations
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(1.14) and (1.15) gives R,, z,, R;, z3, etc., as

R? R}
R2=a2‘REi, R3=a3R_;.

R2 RS (133)
ZZ = bzi, Z3 = b3F,.

where a, and b, are the roots of
A,ay, + B,b, =C,
A.a, + B.b, =C,

in which
A, =2
B, =1 —cose,
1 3 17 2
;= 2cos(pe[7—4cosq>e—?cos .

—~ 3cos® @, — m, (1 + cos ¢,)]
A, = 2 + cos @, — cos® @,
B, =1—3cos o, — %cos® ¢, + %cos® @,
_ 1
8 cos ¢,
+ 8 cos® @, + 4 cos* ¢, — 1L cos® o,
— m,cos @, (1 — cos? ¢,)]

[2 — 7cos @, — & cos® g,

z

and a; and b; are the roots of
A;.a3 + B:.b:; = C;
A,as + Bby = C,

z

in which A4,, A., B, and B, are functions of cos ¢,,
and C, and C, are functions of a,, b, m,, m;
and cos @, m, and m, are the coefficients of

expansion
3

2 20 R
'—<pw+——po)=meR%+m1—lt+...,
)

R, R,
(1.34)
that is,
21 20
e:—E? P +R_ Pe
2 1R, 20 R,
‘ ER?E(‘H ”ReRL)
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For the case of nucleate boiling of saturated
pure water at atmospheric pressure with cos ¢,
= 0-5,sincem, € land m; = 0,

R? ]
R, =R, + Rt ~ 0-8347{1t2 }
R3
+ 0-23272—;-t3...
e r (1.35)
ZO = 0'5 Re + 05 th

R? , R} ,
+1668?t —0250~R—Z-t +...

e

these are illustrated in Fig. 2. It is shown from
the figure that the asymmetry of the fluid-
dynamical field attributed to the existence of a
solid heating surface, which is manifested in
equations (1.14) and (1.15), should cause the

20

&,

FiG. 2. Growth and departure motion shortly after
bubble generation.

bubble to move away from the heating surface
immediately after its embryonic generation.
Figure 3 shows the temperature and pressure
inside the bubble shortly after formation.

Next, let us consider the process immediately
before the departure, t & t;. At the time near to
that of the departure, the temperature inside

719

10
E 8 R
b
Rl %-7 [deg €]
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FiG. 3. Temperature and pressure inside a bubble
shortly after generation.

the bubble, T;, becomes nearly equal to the
saturation temperature, T, so that we obtain
from equation (1.25)

g~ Lpo Vo

and from equation (1.27)
Lpg .
fy = =E2R,,
K

Substituting the above equation into equation
(1.24) and putting T, = T, yield

YT T) = \/(g) Lpo [ Ro()

n) k J(t— 1)
)

(1.36)

In order that the right-hand side of equation
(1.36) should be independent of time, it is
required that

Ry = Ry /(t/t) (1.37)

where

T, — T.xR,T;
Jiw) Ip, V)

On the other hand, since the right-hand sides
of equations (1.14) and (1.15) vanish at ¢ = ¢,,

R, = (1.38)
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putting

t m . t n
RO = Rd (;') s ZO = Rd (t_) (1.39)
d d

and neglecting the right-hand sides of those
equations yield

3m* + 3mn —2m —4$n* =0
3m® — 2m? + 2m*n —Jmn® — 3n® + 4n° = 0
which give

m=051, n=112. (1.40)

The value of R, obtained is in accord with that
given by equation (1.37). z, is a linear function
with respect to time.

Figure 4 shows R, and z, given by equation
(1.39) with m = 0-5 and n = 1-0 together with an

10
R,
L Ko
&
L * o ()
xo >
]
’
S B %o g/ o/ %
05 " Vs Ri
- =inn 7
Vg
e | %9 P
’ ’
’ oo’
- %
,’ x L7 .
o o, © x :sExperimental
i * — :Equ(l.39)
b o’ m=05,n21-0
’
’ 1 1 i 1 l i 1 1 1
o) 05 [X¢)

B

FiG. 4. Growth and departure curves.

experimental result of the nucleate boiling of
saturated pure water on a heating surface of
brass at atmospheric pressure measured photo-
graphically with a high-speed camera (6000
frames/s). Isshiki {5] reported a photographic
study with the results similar to these. It should be
noted from the figure that the relation of
equation (1.39) with m = 0-5 and n = 1-0 could
be valid not only for ¢t &~ t; but for a more
extended range of time.
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GENERATION OF THE NEXT BUBBLE

When a bubble departs from the heating
surface, the liquid surrounding the bubble flows
into the space between the bubble and the heat-
ing surface. This motion of the liquid recom-
poses the temperature field in the vicinity of
the heating surface, so that the next bubble
appears on the heating surface when the field
satisfies the condition responsible for the genera-
tion of an embryonic bubble. In this process of
boiling, we make the following assumptions;
(1) the acceleration of gravity is neglected, (2)
the vapour inside and the liquid outside the
bubble are of thermodynamic equilibrium so
that the radius of the bubble remains constant
at R, after its departure from the heating
surface, where R, is the radius at the time of
departure, (3) the temperature of the liquid
immediately behind the bubble at the time of
departure is T, (4) an embryonic bubble
appears on the heating surface the instant
that the amount of superheat of liquid, T — T,
at the point of the spherical centre of a hypo-
thetical embryonic bubble of radius R,
z, = R, cos ¢ (@,: contact angle), is enough to
satisfy the Clausius—Clapeyron relation, (5)
the temperature inside the embryonic bubble is
equal to that of the liquid at the same position
as the spherical centre of the bubble before
its appearance, and (6) only the temperature
field in the vicinity of the heating surface im-
mediately behind the departed bubble (r ~ 0,
z = 0) contributes to the generation of the
bubble.

Let the distance between the spherical centre
of bubble and the heating surface be z; and the
velocity of the bubble be z,. If the effect of the
viscosity of the liquid is neglected, the motion
of the bubble has a velocity potential, ¢, as

_ R} R; . Zo+ z
¢=- 7[1 + (220)3'] %o {[r2 + (zo+ 2)*JF +

Zg — Z i
+ [~—~_r2 P 2)2]%} @2.n

From equation (2.1), we obtain the components
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of the velocity of the bubble, u and w, in the
r- and z-direction, respectively, in the vicinity of
the heating surface immediately behind the
bubble (r =~ 0, z < z,), which are

w=2fz

(i)

Zg Zg Zy

It should be noted that the flow field described
by equation (2.2) is similar to that in the vicinity
of the stagnation point of a solid body immersed

in an axisymmetrical inviscid flow. From the
stagnation flow analogy, let

u=—1f(z, w=2f()
fO)=70)=0, f(o)=p

satisfying the equation of continuity and the
boundary conditions. Then, the equation of
motion, introducing the viscous effect of the
liquid, is reduced to

fr=of" =P =" (2.5)

where v is the kinematic viscosity of the liquid.
Solving equation (2.5) with the expansion
procedure of f(z) around z = 0 gives

s e ]
cous [ [0}

From equations (2.2) and (2.6), w can be ex-
pressed approximately for z < z, as

w = 2Bz(1 — e™%), 5 = 0656\/(B/v). (2.7)

The position of the spherical centre of the
bubble, z,, and its velocity, Z,, can be obtained
from the equation of motion with respect to
the bubble, which is expressed by a procedure
similar to that used in the derivation of equation
(1.11) as

A2 8 (p[ 0¢ ‘
1 O — | L= ,
2PoVo dat atf 5 <¢ an )So dSy (28)

So

u= —pfr,
where

(2.3)

(2.4)

(2.6)

(2.2)

where V, is the volume of bubble and the
acceleration of gravity is not considered. Using
equation (2.1) and the boundary condition at
the interface of the bubble, (0¢/0n)s,= Zo cos ¢
and since p, < p, we obtain from equation (2.8)

R,\? R,\3 22
25 1+§<J)]_2<J) 20_9p-
0[ 8 Z 8 %) 7o

The solution of equation (2.9) in the expansion
form with respect to time is

. . 2
Z z
Zg =Rd[1 +R_1t+197<§d;t)

2.9)

(2.10)

where z, is the velocity of the bubble at the
time of departure, t = 0. Therefore, § becomes

5 2
Zy Z4
1+ St - Talot) +
ﬁ~3ﬁ d R,
Ry 1+4ﬁt+“9—2"—t2+
R, *\R

@.11)

which implies that the velocity component in
the z-direction, w, decreases rapidly with in-
creasing time.

From the assumption (6), which concerns the
temperature field contributing to the genera-
tion of an embryonic bubble, we obtain the
governing equation of the field as

00 00 %0

where T, is the temperature of the heating
surface, T, that of the liquid at z = oo, and

_T-71,

0 .
Tw_T;

The boundary conditions of equation (2.12) are

provided by the assumptions (4) and (6) as
6(z,0) = 0, 0(0,t) = 1. (2.13)

Let us now turn our attention to the two
extreme cases; the one in which w is so small



722 SUSUMU

that the conduction term (the right-hand side
of equation (2.12)) is much greater than the
convection term (the second term in the left-
hand side) and the other in which w is so large
that the conduction term can be neglected.

In the former case of small w, taking the
solution of equation (2.12) with w = 0, 8°)(z,1),

z/[2 /(an)]
(0) 2
0z =1—

Jr

as a basic solution, we can obtain the successive
solutions, 8, 83 etc., from

exp[—¢&2]dé (2.14)

09— b
0z

100
o Ot

22
02

n=1,23,...
(2.15)

Using the Green’s function of equation (2.15),
Gzt Zr),

1 (z -z’

4o (t t)

to satisfy the boundary conditions (2.13), we
obtain the solution of equation (2.15) as

G(zt; Z't') = 2\/m) a exp [

0V (z,t)

= 4(\/m) ozjdt [ K{z

0 [—(1/2 Va)lz/ v/ (t = t")]

+ 2/[a(t — )] 2t exp [-2%]

a0

x dz’ + K{z = 2/[alt — 1')] z,
(1724a)lz/yie= 1)
tyexp[—z?]dz |+ 1
212 (an)]
— (2/y/) ](; exp [—&?] d¢ (2.16)
where

22
K(z,t) = \/( w(z,t) exp [-— @]

Denoting the first term in the right-hand side
of equation (2.16) as A8z,t) and substituting
equation (2.7) into equation (2.16) yield

KOTAKE

Az ) = jﬂ(t) z exp [ 41 ttz 2]
x {/éna) + dexp [ad(t — t)] [do/(t — 1)
— 2/(4no) ad(t — 1')]} dt". (2.17)
The second approximation, A0‘®), can be ob-

tained similarly. f can be approximated from
equation (2.11) as

Bt) = Boe™™ (2.18)
where §, = 32,/R,; and for small ¢
V= 4z,/R,. (2.19)

From equations (2.17) and (2.18), we obtain
t
AV = 2 2 g Jtexp |- <x
’ Jmaye?
[4]

+ 1z t 1+ 0 [ yt’
[ — x —_—
4o 12 R

w2 — o [
ad?(t t):H n\/(t t)
——Z’ dt’ (2.20)
- 2 .

where 6, = 8,_ [ = 0:656 /(Bo/v)]. In the case
of nucleate boiling of saturated pure water,
the second term in the square brackets in the
right-hand side of the above equation is neg-
ligibly small compared with the first term, so
that the temperature field contributing to the
generation of an embryonic bubble can be
expressed approximately as

_le( )[1_ Wbt Jlt]

+ 0(z2) (2.21)

— 2ad,(t — t')exp

0z,t) = 1

or, if we use equation (2.19),

- i )]

+ 0(z3) (2.21)

In the other case of large w where the con-
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vection term mainly governs the temperature

field, using equation (2.2) for w and neglecting

the viscous effect, we can solve equation (2.12)

by the procedure of variable separation. Put
{2/ [og0)]}

exp [ —¢&2]

and g(0) = 0, so that 6 satisfies the initial and
boundary conditions (2.13). Then, equation
(2.12) becomes

0(zt) = 1 — (2/s/7) (2.22)

dg
= _ =1
i 489

which yields

g(0) = exp [[ 4t dr] j exp [~ | 46(¢)
% dt”] dr’ (2.23)

Using equation (2.18), equation (2.23) is re-
duced to

a(0) = exp [~@ho/ e exp [ —(4ho/)

x e "] dt’ = exp [—(4Bo/v) e "]

11 48, —ony . B/’

x (1 —e 2+ ]}

or, with equation (2.19),

t
gt) = exp[— 3 exp (— 42 t)]f
R,
[}
X exp [3 exp (— 4 L t)] dr. (2.24)
R,

Ifthe free energy of the system is kept constant
before and after the appearance of an embryonic
bubble, the Clausius—Clapeyron relation should
hold between the pressure, p,, and the tempera-
ture, T,, within the bubble at its generation, as
we assumed in the assumption (4);

pPe_ L(1 1)
Po RN\T, T,

(2.24)

Combining the above equation with equation

(1.10) yields
26 _Lf1 1
p.R. RN\T, T)°

(2.25)

With the help of the relation between R, and z,,
z, = R,cos ¢,
equation (2.25) can be rewritten as

*
T, z* cos ¢,

0, = 2.26
¢ T,— Tz, + z¥cos @, (2.26)
where
o 20TR, .
PoL

From the assumption (4), an embryonic
bubble cannot appear on the heating surface
until equation (2.16) or (2.22) with z =z,
satisfies equation (2.26). 6 given by equation
(2.16) or (2.22) and 0, given by equation (2.26)
decrease monotonically with increase of z,, so
that equations (2.26) and (2.16) or (2.22) with
z = z, have more than one solution with respect
to z, (>0) for a given time ¢. Among these times
t, for which there is at least one possible solu-
tion of z,(>0), the minimum is called the most
favourable time, t,, at which an embryonic
bubble first appears. Substituting 0 expressed
by equation (2.16) or (2.22) to a first-order
approximation with respect to z into equation
(2.26) with z = z, yields

1 z* cos @ A
2 _ t _ e
7o = )[1 —4 Jo) ]Ze
z*cos @, 2T, — T,
+\/(7zozt)l_A T.-T

A= ~ipi
o = WM By [ (227)

z* cos @,
22 — /[mag(t)] [1 - m] -

0

2T, — T,
+ /[rog(1)] z* cos %ﬁ =0.

Since ¢, is the minimum value of ¢ for which
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the above equation has real roots, z,, we obtain

1 z* cos @, |? A
t —_
V(e e)[l -4 J(mat,) }
4z* cos 9, 2T, — T,
=1-a I-T > (2.28)
1 z* cos @
-1 _ e
Ze 2\/(nate)[1 — 4 \/(nate):l J

or
. z* cos @, )
gt )] 1 ~ =5
VI ][ N/ [nag(te)]}
2T, - T,
=4 * -7s  w > .
z* cos ¢, T T (2.29)
. z* cos @,
z, =%/ [nag(te)][l - ——\/[nag (t )]:,
e J

For the nucleate boiling of saturated pure
water, in which

z*cos g, < \/(mat,),  z*cos @, < /[nog(t,)]
equations (2.28) and (2.29) become

ﬁO 1 *
\/(nate) = 4[1 — (\/7'[)7%:' Z
X COS @, 277;—___% (2.30)
J [mag(t.)] = 4z* cos o, Z—Tw:—? .31

With the use of equation (2.19), equation (2.30)
is furthermore reduced to

\/(mxte)=4<l 3‘/ ” \/ z,,:>

2T, - T,
X COs (pe——’f‘—sTTr: . (23(),)

From these equations, we obtain z, that is,
R.(= z/cos @.);

R, =2r s v

2.32

which is illustrated in Fig. 5 for saturated pure
water.

peVec, 1.

The growth rate of a bubble at the initial
time, (Ro),=o = R, can be obtained as follows.
From equation (1.27),

Vi
4. = peVec, Ty + Lp.V. (7‘ + Hc1>
(2.33)

where V, and S, are the volume and the area of
the liquid—vapour interface of the embryonic

xI03cm x10%cm/s

5-0 (20

LK
FIG. 5. Initial radius and growth rate vs. superheat.

deg C

bubble, respectively, and V; and S, are repre-
sented as

Re - ze)[z(ZRe + Ze)(Rl + Zl)

+ (R, + z)2R, + z,)]
Sl = zﬂ[Re(Rl + 21) + Rl(Re + Ze)].
The substitution of equations (1.26), (1.32) and
(2.40") into equation (2.33) yields
L 2 1
9 _ i <0
y 2 — 2cos @, + cos® @,
2 + cos @, — cos® @,
20 1

1+ L H R,
R.p.H c,T, R,

(2.34)
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If we assume that the temperature gradient at
the liquid—vapour interface of a bubble is on an
average equal to that at z = z,, the amount of
heat flow into the bubble through the interface
at the embryonic instant can be written as

oT
q. = — K(Elg,te Se

Obtaining (0T/dz),,,, from equation (2.16) or
(2.22), we can get R, from equations (2.34) and
(2.35) as ’

(2.35)

K 1
Ri=—I(T, - T)~—7—53
' Lp, J[mog(t,)]
RZ cos? (pe] 2
X €X —_ N
P17 4ag(ts J (T + cos 92 — cos @,)

6 [2—2cosp, + cos® o,
x<{1+3 ¢ 5 e
p.LR.| 2+ cos@, — cos” ¢,

()

For saturated pure water, the second term in
the square brackets in the right-hand side of the
above equation is negligibly small compared
with unity. Then, R,, can be written as

_ 2T z* 1
" Lp, R2(1 + cos ¢,)2 — cos ¢,) cos ¢,
(2.36")

Figure 5 shows R, for saturated pure water with
cos ¢, = 05,

The initial velocity of a bubble, (Z),-¢
(= z,), can be considered as follows. Suppose
that the number of molecules in the liquid
state is N at an instant and that at the next
moment N, molecules out of N turn into vapour
so that N, molecules remain in the liquid state.
Let the free energy of a molecule in the liquid
state be u, and that in the vapour state be u,.
The change in the free energy of the system
associated with evaporation, AG, is given by

(2.36)

R,

AG = N(u, — p) + 0 2 R}(1 + cos ¢;)
+ (Usv - Uls) ﬂRé Sin2 Po

3A
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where o, and a,, are the surface tensions
acting on the solid—vapour interface and the
liquid—solid interface, respectively, and have the
relation

O, = 015 + 0COS @y

Using this relation and

Ny, = gRS(l + €08 @g)? (2 — cos @)

yields

R3
AG = [g(uv — S+ nRéo]

x (1 + cos @g)* (2 — cos @) (2.37)

from which we obtain

dAG _ %(m ~

dt dt
x (1 + cos @) (2 — cos @)

d s — M .
_ % (f‘—‘ R} + 3Rga> 7 sin? . (2.38)

The assumption (4) concerning the condition of
the generation of a bubble implies (JAG/CR, =,
= 0 which gives

R} + 2R00>

v

Be ZHig2 4 2R6 = 0.

v

If we assume that, at the embryonic instant of
a bubble, the process should develop so as to
minimize the free energy of the system, we

obtain
dAG
(Tt ) o,

With the use of the above two relations, equation
(2.38) becomes

de
— = .39
( e ) 0 2.39)
which means
(io)e = (RO)e cos (pe (2'40)
or
z, = R, cos ¢,. (2.40)
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BUBBLE CYCLE
From equation (1.28) with R, = z,, we can
obtain the time interval from the appearance
of an embryonic bubble to the departure of the
bubble from the heating surface, t;, and the
radius of the bubble at the departure, R;;
namely, with the consideration of equation
(1.33),
ty=14 Ej’ R,=0,R, (3.1
where t; and o, are the functions of cos ¢,.
From equation (2.36), we obtain

to= R fe0s0) = TR (32)
where f(cos ¢,) is a function of cos ¢,. From
equations (3.1) and (3.2), we obtain the relation
between t; and R, as

R} _o;

ty Tq

(3.3)

Since z, can be expressed from equation
(1.40) as
t
zo = Ry—
0 d td

2, becomes from equation (3.3)

!
i =

wRG

(3.4

This relation has been observed in the experi-
mental study carried out by Isshiki [5] to hold
approximately.

Concerning the radius of a bubble at depar-
ture, R,, equation (1.38) gives

Tw B T; KRqT;

Ra= J) Lp,

Vi
If we put
ty ¢ R3,
the above equation yields
R, oc R~ 22, (3.5)

Since the usual results of experimental investiga-
tion show that the radius of a bubble at depar-
ture, R, increases as the temperature difference,

KOTAKE

T, — T, decreases, that is, as its radius at the
embryonic moment, R,, increases, the value of
n should be larger than 2. If we assume R, =
o4R, similar to equation (3.1), we obtain n = 4,
that is, R} oc t, [cf. equation (3.3)], which has a
much greater deviation from the experimental
results than equation (3.3) has, so that a more
careful examination has to be directed equation
(1.38).

The time interval from the departure of a
bubble to the appearance of the next bubble,
t,, can be obtained from equation (2.28) or
(2.29). When the temperature field is governed
mainly by the conduction effect, we obtain from
equation (2.28) or (2.30)

t, = icos“2 ¢..R2=1,R?. (3.6)
ot

e

On the other hand, when the field is dominated
by the convection effect, from equation (2.24)
with f# & f§, ., that is,

1
~ ZB(“ﬂt)

1
(e - 1)

4p
and # oc R; 3, we obtain
t, =t ,R2-1M

and for sufficiently large values of fit,

g(t) =

t,=1t/R} 3.7

Finally, the complete cyclic period of the
process of nucleation, growth, and departure
can be found from equations (3.2) and (3.7)
when the convection effect is associated with
the motion of bubble as

R o3

o+t T+ 1T,

(3.8)

and from equations (3.2) and (3.6) when the

conduction effect is predominant as
R}

a;
t,+1t;, T+ Ry

(3.9)

Figure 6 shows experimental results of the
relation between the radius of a bubble at
departure and the cyclic period. It is shown from
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the figure that, as the radius of the bubble
decreases, that is, at the higher superheat, the
features of the experimental results approach

400

200 -

T

100

|
et/

50

T T T TTT]

NS

T |
o2 05 0

olLLl Ll

2Ry

FiG. 6. Frequency of bubble cycle vs. departure
radius.
Q: reference [5]; © : reference [8]; x reference
[9];n = R3At, + t;) = constant.

the relation expressed by equation (3.9) or
(3.8), while Jakob’s relation

Ry
t+t4

= constant (3.10)
holds satisfactorily for larger values of the
radius, that is, at the lower superheat. For the
larger values of the radius, the acceleration of
gravity should be taken into consideration to
account for the mechanism of boiling, as has
been done by Han [10]. The mechanism of
boiling considered from the fluid-dynamical
point of view could be more predominant for
the smaller values of the radius, i.e. at the higher
superheat. ‘

CONCLUSIONS
The process of nucleate boiling from a solid
superheated surface, bubble generation, growth
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and departure, is studied fluid-dynamically and
thermodynamically to account for its mech-
anism.

The asymmetry of the fluid-dynamical field
associated with the existence of a solid heating
surface causes a bubble to move away from the
surface, with a nearly constant speed, while the
surface area of the bubble increases linearly
with respect to time. The time interval between
the generation and departure of a bubble is
proportional to the third power of the radius
of the bubble at departure. Consideration of the
velocity and temperature fields in the vicinity
of the heating surface provides a relation be-
tween the period of the bubble cycle and the
amount of superheat. The period is proportional
to the third power of the radius of the bubble
at departure when the fields interact strongly
with each other, and to the second power when
they do not. The radius of the bubble at depar-
ture is inversely proportional to the amount of
superheat.
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Résumé—Le mécanisme de I'ébullition nucléée & partir d’une surface surchauffée est étudié du point de
vue de la dynamique des fluides et de la thermodynamique.

La dissymétrie du champ dynamique associé a I’existence d’une surface chauffante provoque I'éloigne-
ment des bulles de la surface & une vitesse presque constante, tandis que la superficie des bulles croit
linéairement en fonction du temps. L’intervalle de temps entre la formation d’une bulle et son détachement
est proportionne! au cube de son rayon. Si I’on considére les champs de vitesse et de température au voisin-
age de la surface chauffante, on obtient une relation entre la période du cycle des bulles et la valeur de la
surchauffe. La période est proportionnelle au cube du rayon de la bulle, lorsqu’il y aura une intéraction
importante entre les champs, et au carré du rayon, lorsqu’il n’y en a pas. Le rayon d’une bulle est inverse-

ment proportionnel a la valeur de la surchauffe.

Zusammenfassung—Der Mechanismus des Blasensiedens an einer iiberhitzten Fliche wird fliissigkeits-
dynamisch und thermodynamisch untersucht.

Die Asymmetrie des fliissigkeitsdynamischen Feldes zusammen mit der Heizfliche bewirken die
Ablosung der Blasen von der Oberfliche mit nahezu konstanter Geschwindigkeit, wihrend die Oberflache
der Blase hinsichtlich der Zeit linear zunimmt. Das Zeitintervall zwischen Blasenbildung und Abreissen ist
proportional der dritten Potenz des Blasenradius. Die Betrachtung der Geschwindigkeits- und Temperatur-
felder in der Umgebung der Heizfliche vermittelt eine Beziehung zwischen der Periode des Blasenwechsels
und der Grosse der Uberhitzung. Die Periode ist proportional der dritten Potenz des Blasenradius, wenn
die Felder sich stark beeinflussen und proportional der zweiten Potenz, wenn sie es nicht tun. Der Blasen-

radius ist umgekehrt proportional der Grosse der Uberhitzung.

Anrnoramuaa—IIpoBeieHO TepMOAMHAMHYECKOE M IMIAPOAHHAMMYECKOE HCCIEOBAHWE MeXa-
HH3Ma NYBHPHKOBOrO KHIIEHHA HA Meperperolt HoBepXHOCTH.

Hanuyye NOBepXHOCTH HArpeBa CO3MAET ACHMMETPHIO THAPOAMHAMUYECKOTO MO, KOTOPaA
BHIBHIBAET ABHH{EHHE NMY3HPHLKOB OT HOBEPXHOCTH € MOYTH MMOCTOAHHON CKOPOCTHIO, 3 NIOWAAb
TOBEPXHOCTH IIySHPKOB JMHeHAHO BospacTaer co BpemeHeM. Ilepuos BpeMenu mempy oGpa-
B0BAHMEM IIy3HPbKA U €T0 OTPHBOM NPONOPHMOHAJIEH PaAuyCy NYBHPbKA B TPeThel CTelmeHn.
UccaenoBanne noseit ckopocTedl m Temmepatyp BOIMBH HNOBEPXHOCTH HarpeBa IO3BOJAET
TIOJIY4YMTh COOTHOIIEHUe, CBA3HIBAIOIIEe BpeMA PA3BUTUA NMY3HPbKA U BeJIMYMHY Ieperpesa.
IIpu cuabHOM B3aMMOJEHCTBME MOJeH STOT HepMON MPOMOPUNOHANEH PafuMyCy NysHphKA B
TpeThbeli CTeNeHM, ¥ PauyCcy My3HpPbKA BO BTOPOH CTeNeHH IIPU OTCYTCTBUM B3aUMOReNHCTBIA

nodeit. Paguyc nysspeka 06paTHO IPONOPUMOHAJIEH NeperpeBy.



